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Abstract. The relation between the electron–electron correlations and magnetic-field-induced
angular momentum transitions in the barrier D− centre is investigated based on a variational
method. The Chandrasekhar-type variational wavefunctions for the barrier D− states are
constructed based on the exact solutions in the strong-magnetic-field limit. The energies of
the barrier D− states, the binding energies, the electron densities, the angular correlations, and
the average distances between the two electrons are obtained as functions of the applied magnetic
field strengthγ and the distanceζ between the positive ion and the plane where the two electrons
reside. When the transitions of the barrier D− ground state occur for finiteζ with increasingγ ,
the strong correlations appear in the electron densities, the angular correlations, and the average
distances between the two electrons. As a consequence of detailed considerations of the relation
between the angular correlations and the strength of binding, we find that the magnetic-field-
induced angular-momentum transitions occur as a result of the strong correlations in the barrier
D− states.

1. Introduction

It is well known that the effects of interparticle correlations are enhanced by a reduction
of dimensionality and strong external magnetic fields. One of the simplest systems in
which electronic ‘many-body’ effects can be studied is a system of negative donor centres
(D−) in semiconductors. D− centres are formed by neutral donors (D0) trapping an extra
electron. Today it is possible to create more stable D− centres in selectively doped multiple
quantum wells [1–6] compared with bulk semiconductors [7]. Quasi-two-dimensional (Q2D)
D− centres in strong magnetic fields are suitable for studying the effects of electron–
electron correlations, and a number of experimental [1–6, 8–10] and theoretical [11–18]
investigations for the Q2D D− centres have been reported in recent years.

So far most of the theoretical investigations have been concerned with systems of D−

centres in which donor impurities areδ doped at the centre of the quantum wells [2, 6,
11–17]. Recently Zhu and Xu [19] investigated the Q2D D− states which are formed
away from the centre of the quantum wells, using a variational method. They showed
that the ground state for such a system changes from thes-like singlet state to thep-like
triplet state with increasing magnetic field. Fox and Larsen [20] have proposed a model
called a barrier D− centre in which two electrons confined to thex–y plane are bound
by a positive ion at a distanceζ from the plane. This is one of the simplest models for
the Q2D D− centres which are formed near the barrier edge or inside the barrier. They
showed that the transitions of the ground state occur between the states withL = 0 ∼ 5
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as a function of the distanceζ using the exact solutions for the barrier D− centre in the
strong-magnetic-field limit (where−L is thez component of the total angular momentum).
In our previous work [21] we investigated the problem of the barrier D− centre based on
a direct diagonalization method in which mixing between the different Landau levels is
taken into account. We showed that the transitions of the barrier D− ground state also
occur in finite magnetic fields. Marmorkoset al [22] investigated the remote D− states
with L = 0 ∼ 2 in double quantum wells using a numerical technique which solves the
two-electron Schr̈odinger equation. They indicated that the electron–electron correlations
are related closely to the magnetic-field-induced angular-momentum transitions. Recently
an experimental study for such problems was reported [10].

Although the barrier D− centre is an idealized model, it includes essential physics
concerning the magnetic-field-induced angular-momentum transitions which occur as off-
centre effects of the D− centre in the quantum wells. Understanding the barrier D− centre is
useful for clarifying phenomena concerning the Q2D D− state away from the centre of the
quantum well. In the model of the barrier D− centre, the electron–ion Coulomb attraction
is always dominant compared with the electron–electron Coulomb repulsion whenζ = 0
(strictly two-dimensional models [23–25]). In this case the transitions of the D− ground state
do not occur. On the other hand, the effects of the Coulomb attraction decrease asζ increases
from zero. As the magnetic field strengthγ increases the Coulomb repulsion eventually
comes to dominate over the Coulomb attraction. In this case the transitions of the D− ground
state occur. When the role of Coulomb repulsion which tends to keep electrons as far apart
as possible is important, the electrons can lower their energy most effectively by forming
highly correlated states. Therefore the effects of the electron–electron correlations on the
magnetic-field-induced angular-momentum transitions are very important. In fact, Fox and
Larsen showed that at larger values ofζ the strong angular correlations exist in the barrier
D− states in the strong-magnetic-field limit [20]. Marmorkoset al showed that the angular
correlation of the remote D− state with zero angular momentum strengthens until a certain
value of the magnetic field, whereas it weakens at larger fields [22]. They concluded that
such a correlation gives rise to the magnetic-field-induced angular-momentum transitions.
The states with relatively large angular momentum offer the possibility of achieving a
relatively high degree of correlation.

The purpose of the present paper is to investigate systematically the relation between the
electron–electron correlations and the magnetic-field-induced angular-momentum transitions
in the problem of the barrier D− centre including the states with large angular momentum.
Here we use a variational method instead of the direct diagonalization method because the
number of parameters included is much smaller and the physical picture of the electrons in
the barrier D− state is clearer in the variational method than in the direct diagonalization
method. So far, many investigations for Q2D D− states with small angular momentum
(L = 0, 1 for the singlet state andL = 1, 2 for the triplet state) have been reported, but
there are no variational calculations for the Q2D D− states with large angular momentum.
We extend conventional variational methods [2, 6, 16, 17, 26] which use Chandrasekhar-
type variational functions [27] for D− states with small angular momentum to apply
to barrier D− states with large angular momentum. We construct Chandrasekhar-type
variational wavefunctions of the barrier D− states based on the exact solutions [20] in
the strong-magnetic-field limit. It is expected that our variational calculations are accurate
in relatively high magnetic fields. The validity of our variational functions will be discussed
by comparing the energies of the barrier D− states with those obtained based on the direct
diagonalization method [21]. To clarify the mechanism of the transitions of the barrier
D− ground state and to have a clear understanding of the electron states of the barrier D−
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centre, we calculate the binding energies, the electron densities, the angular correlations,
and the average distances between the two electrons. For finiteζ the transitions of the
barrier D− ground state occur as a function of the magnetic field strengthγ . In this case
the strong correlations appear in the electron densities, the angular correlations, and the
average distances between the two electrons. As a consequence of detailed considerations
of the relation between the angular correlations and the strength of binding, we find that
the magnetic-field-induced angular-momentum transitions occur as a result of the strong
correlations in the barrier D− states.

In section 2 we present the model of the barrier D− centre, the variational calculation
procedure for the energies of the barrier D− states, and the method of calculation for the
various physical quantities. In section 3 we show the results of variational calculations for
the energies of the barrier D− states and discuss the validity of the variational wavefunctions
employed. Using the variational functions obtained we calculate the binding energies for the
barrier D− states, the electron densities, the angular correlations, and the average distances
between the two electrons. We argue the relation between the electron–electron correlations
and the magnetic-field-induced angular-momentum transitions. Finally we summarize the
results in section 4.

2. Formulation

In the effective-mass approximation, the Hamiltonian for the barrier D− centre in a magnetic
field along thez axis is written as

H = hD(1)+ hD(2)+ 2

| Eρ1− Eρ2| (1)

wherehD(j) is the barrier donor Hamiltonian for thej th electron given by

hD(j) = h0(j)− 2

(ρ2
j + ζ 2)1/2

(2)

h0(j) = −∇2
j +

γ

i

∂

∂ϕj
+ 1

4
γ 2ρ2

j . (3)

Here Eρj is the position vector of thej th electron in thex–y plane,ϕj is the angle between
Eρj and thex axis, ζ is the distance between the fixed positive ion and thex–y plane, and
we took the origin as the projection of the positive ion on thex–y plane.h0(j) is the free
electron Hamiltonian in the magnetic field applied perpendicular to thex–y plane. The
unit of length is an effective Bohr radiusa∗B and the unit of energy is an effective Rydberg
R∗. γ = h̄ωc/2R∗ is the dimensionless magnetic field strength and is equal to the lowest
Landau level energy of the free electron in units ofR∗, where the cyclotron frequencyωc
is given byωc = eB/m∗c, B is the strength of the applied magnetic field andm∗ is the
conduction-band mass. Throughout the paper we neglect Zeeman energies associated with
the electron spins.

The total HamiltonianH is invariant under rotation about thez axis and under
interchange of the two electrons. Therefore its eigenstates are classified according to thez

component of the total angular momentum and their symmetry under interchange of the two
electrons. In the strong-magnetic-field limit the exact solutions for the total Hamiltonian
H exist [20]. Based on the exact solutions [20, 23–25] in this limit we take the following
Chandrasekhar-type variational functions for the low-lying barrier D− states

9L,3( Eρ1, Eρ2) = FL,3( Eρ1, Eρ2)
(

1+4 | Eρ1− Eρ2|2
)

(4)
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where

FL,3( Eρ1, Eρ2) =
∑
L1

CL1,L2,3 GL1,L2,3( Eρ1, Eρ2) (5)

GL1,L2,3( Eρ1, Eρ2) = ψL1( Eρ1) ψ
′
L2
( Eρ2)+3ψ ′L2

( Eρ1) ψL1( Eρ2) (6)

ψLj ( Eρ) = ρLj exp(−iLjϕ − ξLj ρ2). (7)

−L represents thez component of the total angular momentum (L = 0, 1, 2, . . .) and3
is the index representing the symmetry of the wavefunctions under interchange of the two
electrons:3 = +1 corresponds to the (symmetric) singlet states and3 = −1 corresponds
to the (antisymmetric) triplet states. The one-particle variational functionsψLj are the
eigenfunctions of an angular momentum along thez axis with the eigenvalue−Lj , and
the functionsψ ′Lj ( Eρ) are defined by the same equation (7) with different parametersξ ′Lj .
HereξL1, ξ ′L2

, CL1,L2,3 and4 are variational parameters. The summation overL1 is taken
from zero to [L/2] for the singlet states (L > 0) and to [(L − 1)/2] for the triplet states
(L > 0), respectively, where [a] means the maximum integer not exceedinga (Gauss’s
notation).L2 = L− L1 > L1. In the variational functions employed the electron–electron
correlations of the system are taken into account by taking linear combinations of the
functionsGL1,L2,3( Eρ1, Eρ2) and the correlation factor( 1+4 | Eρ1− Eρ2|2).

We determine numerically the variational parametersξL1, ξ ′L2
, CL1,L2,3 and4 so that

the energies of the barrier D− states

ED−(L,3) =
〈
9L,3

∣∣ H ∣∣9L,3〉〈
9L,3

∣∣ 9L,3〉 (8)

are minimized. Because of the normalization condition of the wavefunction all ofCL1,L2,3

are not independent variational parameters. We can assumeC0,L,3 = 1. For example, for
the singlet barrier D− state withL = 2 there are six variational parameters (ξ0, ξ1, ξ ′1, ξ ′2,
C1,1,S , 4). Owing to the simple form of the variational wavefunctions the four-dimensional
integrals over the coordinates of the two electrons can be done analytically.

One-electron binding energies,εB(L,3), are defined as

εB(L,3) = ED−(L,3)− (ED0 + γ ) (9)

where ED0 is the ground state energy for the barrier donor Hamiltonian andγ is the
lowest Landau level energy of the free electron.ED0 is calculated variationally with the
wavefunction having the same form forLj = 0 in (7). εB(L,3) are negative for bound
states and positive for unbound states.

We can easily calculate various physical quantities with the simple variational functions
employed. In order to have a clear understanding of the electron states of the barrier D−

centre we calculate the following physical quantities. The electron densities defined by

nL,3( Eρ) =
2∑

j=1

〈
9L,3

∣∣ δ( Eρ − Eρj ) ∣∣9L,3〉〈
9L,3

∣∣ 9L,3〉 (10)

represent the probability of finding an electron at a positionEρ in the x–y plane. The
probabilities of finding two electrons at a certain relative angleϕ betweenEρ1 and Eρ2 are
defined as

gL,3(ϕ) =
〈
9L,3

∣∣ δ(ϕ − ϕ12)
∣∣9L,3〉〈

9L,3
∣∣ 9L,3〉 . (11)
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In the present paper we callgL,3 the angular correlation functions. They represent the
angular correlations between the two electrons. The average distances between the two
electrons are given as

ρ12(L,3) =
[〈
9L,3

∣∣ | Eρ1− Eρ2|2
∣∣9L,3〉〈

9L,3
∣∣ 9L,3〉

] 1
2

. (12)

By considering the binding energiesεB(L,3) together with the above mentioned quantities
nL,3( Eρ), gL,3(ϕ) andρ12(L,3), we can clarify the relation between the electron–electron
correlations and the magnetic-field-induced angular-momentum transitions in the barrier D−

centre.

3. Result and discussion

We now show the results of the variational calculations for the energies of the barrier D−

states. Using the variational wavefunctions in (4) the variational parameters are determined
so that the energiesED−(L,3) in (8) are minimized. Figure 1 typically shows theγ
dependence of the energies of the singlet barrier D− states withL = 2 at ζ = 0.1 and
0.5. The solid lines show the results based on the present variational calculation. To
show the accuracy of the present calculation the corresponding results based on the direct
diagonalization method in which mixing among the low-lyingNmix = 7 Landau levels
is taken into account [21] are included in this figure (dotted lines). These results with
Nmix = 7 are the best results obtained before [21]. Except for the weak magnetic field
for which the results based on the direct diagonalization method are not expected to be
accurate, the energies obtained with the present calculation are always higher than those
obtained previously. But the differences between these energies are very small, and they
become smaller asζ increases. For the other states we obtained results similar to those for
the singlet states withL = 2. These results indicate that the simple variational functions
employed are a relatively good approximation for the barrier D− states.
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Figure 1. The energiesED− (2, S) (in units ofR∗) of the singlet barrier D− states withL = 2
at ζ = 0.1 and 0.5 as a function ofγ . The solid lines show the results based on the present
variational calculation. The dotted lines show the corresponding results based on the direct
diagonalization method of [21].
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Figure 2. The binding energiesεB (in units of R∗) for the barrier D− states atζ = 1.0 as
a function ofγ . The solid and dashed lines represent, respectively, the present results for the
singlet and triplet states. As a comparison, the previous results [21] for the singlet and triplet
states are shown by the dashed–dotted and dotted lines, respectively.

We plot the binding energiesεB(L,3) in (9) at ζ = 1.0 as a function ofγ in figure 2.
As a comparison, the previous results are also shown in figure 2. The solid and broken
lines represent the present results for the singlet and triplet states, respectively, while the
dashed–dotted and dotted lines represent the previous results for the singlet and triplet
states, respectively. Here we show only the bound states (εB < 0). We should note
that a consistent way to test the accuracy of a calculation is the direct comparison of the
energiesED− and not the binding energiesεB which result from the difference between
the energiesED− andED0. As shown in figure 2, however, it is found that the present
results are in good agreement with the previous ones. This indicates that we can investigate
the physics concerning the magnetic-field-induced angular-momentum transitions using the
present variational functions. From the present results the transitions (L→ L + 1) of the
barrier D− ground state occur atγ = 0.16, 1.14, 2.45, 3.82 and 5.23.

To clarify the mechanism of the transitions of the barrier D− ground state and to have a
clear understanding of the electron states of the barrier D− centre, we investigate the electron
densitiesnL,3( Eρ) in (10), the angular correlation functionsgL,3(ϕ) in (11), and the average
distances between the two electronsρ12(L,3) in (12) using the variational wavefunctions
in (4). Figure 3(a) shows the electron densities as a function of the position vectorEρ and
figure 3(b) shows the angular correlation functions as polar plots ofϕ for the singlet barrier
D− states withL = 2 at ζ = 0.5. Figure 4 shows the same quantities as figure 3 for the
triplet states withL = 5 at ζ = 1.0. In all the plots the solid, broken, and dotted lines
represent the results atγ = 0.4, 2.0, and 6.0, respectively.n( Eρ) do not depend on the
angle of Eρ because of the rotational invariance about thez axis of the system. From the
definitions ofn( Eρ) andg(ϕ) they satisfy the relations

∫
dEρ n ( Eρ) = 2 and

∫
dϕ g(ϕ) = 1.

The average distances between the two electrons for the singlet states withL = 2 atζ = 0.5
and the triplet states withL = 5 at ζ = 1.0 are given in table 1, forγ = 0.4, 2.0, and
6.0. In figures 3(a) and 4(a) whenγ is small (γ = 0.4), the electron densitiesn( Eρ) have



Barrier D− centres in magnetic fields 4407

0.0

0.2

0.4

0.6

0 2 4 6

γ=0.4
γ=2.0
γ=6.0

E
le

ct
ro

n 
de

ns
it

y 
n(

r
)

r

 

singlet, L=2, ζ=0.5
(a)

0.00

γ=0.4
γ=2.0
γ=6.0

0°

90°

180°

270°

0.25 0.50

singlet, L=2, ζ=0.5

(b)

Figure 3. The radial electron densitiesn(ρ) as a function ofρ = | Eρ| (a) and the polar plots of
the angular correlation functionsg(ϕ) (b) for the singlet barrier D− states withL = 2 atζ = 0.5.
The solid, broken, and dotted lines show the results forγ = 0.4, 2.0, and 6.0, respectively.n(ρ)
are in units of(a∗B)
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Figure 4. As figure 3, but for the triplet barrier D− states withL = 5 at ζ = 1.0.

large peaks at the origin and successive peaks are a significant distance apart. In the case
of small γ , the angular correlations are relatively weak as shown in figures 3(b) and 4(b).
These results indicate that the electron–ion Coulomb attraction is strong and the barrier
D− states consist of the inner electron strongly bound by the positive ion and the outer
electron weakly bound. For the triplet state withL = 5 at γ = 0.4 the average distance of
5.98 between the two electrons is roughly equal to the distance 5.0 between the two peaks
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in n( Eρ). On the other hand, with increasingγ the role of the electron–electron Coulomb
repulsion, which tends to keep electrons as far apart as possible, increases as a result of the
confinement due to magnetic fields. In fact, whenγ is large (γ = 6.0) n( Eρ) have peaks at
ρ(> 0) and the angular correlations are strong. It is also found that the average distances
between the two electrons are roughly equal to twice the distances between the origin and
the position of the peak inn( Eρ). For example,ρ12 = 1.40 is roughly equal to 2×0.5= 1.0
for the singlet state withL = 2 at γ = 6.0.

Table 1. The average distancesρ12 (in units of a∗B ) between the two electrons for the singlet
barrier D− states withL = 2 at ζ = 0.5 and for the triplet states withL = 5 at ζ = 1.0 for
several points ofγ .

ρ12

singlet,L = 2 triplet,L = 5
γ (ζ = 0.5) (ζ = 1.0)

0.4 4.33 5.98
2.0 2.31 3.09
6.0 1.40 1.99

Here we would like to comment briefly on the effects of the correlation factor
( 1+4 | Eρ1− Eρ2|2) and the linear combination of the functionsGL1,L2,3. The correlation
effects are taken into account only through the correlation factor for the states with small
angular momentum (L = 0, 1 for the singlet state andL = 1, 2 for the triplet state), while
not only the correlation factor but also the linear combination of the functionsGL1,L2,3

contribute to the electron–electron correlations for the states with large angular momentum.
As a result of our calculations it is found that the contributions to the energies of the barrier
D− states through the correlation factor are about a few per cent for the states with small
angular momentum but negligibly small for the states with large angular momentum. In
order to calculate the energies of the barrier D− states more accurately we must consider
different forms of the correlation factor [26]. The role of the correlation factor will then be
more important. The contributions to the other physical quantities through the correlation
factor are as small as those to the energies of the barrier D− states. Therefore changes of the
angular correlations for the states with small angular momentum are caused only through
the correlation factor but most changes of the angular correlations for the states with large
angular momentum arise through the linear combination of the functionsGL1,L2,3.

It is known that the magnetic-field-induced angular-momentum transitions also occur in
quantum dots in which a few interacting electrons exist [28–30]. It is understood that these
phenomena in the two different systems are caused by competition between the confining
potential energy and the interaction energy [20, 21, 28–30]. The confining potential is a
harmonic potential for the quantum dot system. The corresponding confining potential is
a Coulomb attractive potential by the positive ion for the barrier D− centre. Here again
we would like to show that the transitions for the barrier D− ground state are caused
by competition between the attractive potential and the repulsive potential. We divide
the energiesED−(L,3) of the barrier D− states into two parts,E1(L,3) andE2(L,3).
E1(L,3) are given as the expectation values of the Coulomb repulsive potential which is
the last term in (1) andE2(L,3) are given asED−(L,3) minusE1(L,3). We define the
differences ofE1 andE2 between the states with(L,3) and(L′,3′) as follows,

1E
(L,3)→(L′,3′)
1 = E1(L,3)− E1(L

′,3′) (13)
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and

1E
(L,3)→(L′,3′)
2 = E2(L,3)− E2(L

′,3′). (14)

1E1 represent the differences of the Coulomb repulsive energy between the two electrons
and1E2 represent the differences of the Coulomb attractive energy between the electron
and the positive ion when the state of the system changes from(L,3) to (L′,3′). We plot
1E1 and−1E2 for the transitions(1, A) → (2, S) and (3, A) → (4, S) at ζ = 1.0 as a
function ofγ in figure 5. The solid and dotted lines represent1E1 and−1E2, respectively.
It is found that for the transitions (L→ L+1)1E1 are always positive and1E2 are always
negative. The vertical lines represent the points ofγ (denotedγL) at which the transitions of
the ground state forL→ L+ 1 occur. The differences of the binding energiesεB between
the different states are

εB(L,3)− εB(L′,3′) = 1E(L,3)→(L
′,3′)

1 +1E(L,3)→(L′,3′)2 . (15)

At γ = γL the differences of the binding energies are equal to zero and1E1 are exactly
equal to|1E2|. For γ < γL, 1E1 are smaller than|1E2|, while for γ > γL the reverse
applies. That is, it is found that the transitions of the barrier D− ground state occur when
the gain of the Coulomb repulsive energy1E1 becomes larger than the loss of the Coulomb
attractive energy|1E2|. On the other hand, no such transition occurs in the caseζ = 0
in which the electron–ion Coulomb attraction is always dominant. For such transitions to
occur it is essential that the electron–electron Coulomb repulsion comes to dominate over
the electron–ion Coulomb attraction.
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Figure 5. 1E1 and−1E2 (in units ofR∗) for the transitions of the barrier D− ground state
(1, A)→ (2, S) and (3, A)→ (4, S) at ζ = 1.0 as a function ofγ . The solid and dotted lines
represent1E1 and−1E2, respectively.

When the Coulomb repulsion comes to dominate over the Coulomb attraction, the
electron–electron correlations play important roles [20, 22]. Here we investigate a
relation between the electron–electron correlations and the magnetic-field-induced angular-
momentum transitions in detail. Figures 6(a) and (b) show the angular correlation functions
gL,3(ϕ) for the triplet states withL = 3 and the singlet states withL = 4, respectively, at
ζ = 1.0 for several points ofγ . These figures show that the angular correlation for each
state almost reaches the maximum around the point at which the strength of binding for the
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Figure 6. The angular correlation functionsg(ϕ) for the triplet barrier D− states withL = 3
(a) and for the singlet states withL = 4 (b) atζ = 1.0 for several points ofγ .
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Figure 7. The angular correlation functionsg(ϕ) at ϕ = π andζ = 1.0 as a function ofγ . The
solid and broken lines represent the results for the singlet and triplet states, respectively.

state becomes maximum (γ ∼ 2.0 for the triplet state withL = 3 andγ ∼ 3.0 for the singlet
state withL = 4) asγ increases and it remains almost unchanged for largerγ . In order
to show this more clearly we plot in figure 7 theγ dependence of the angular correlation
functionsgL,3(ϕ) at ϕ = π . The results for the singlet and triplet states are represented
by the solid and broken lines, respectively. Here we show only the states concerning the
transitions of the ground state. The vertical lines in figure 7 represent the points at which the
strength of binding for each state reaches a maximum. Here we consider that the strength
of the angular correlations is well expressed by the angular correlation functionsgL,3(ϕ)

at ϕ = π . In figure 7 it is clearly shown that except for the singlet state withL = 0 the
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angular correlation function atϕ = π for each state reaches almost the maximum around
the point at which the strength of binding for the state becomes maximum and it remains
almost unchanged for largerγ . The different behaviour for the singlet state withL = 0 is
related to the fact that the state has no angular correlation in the strong-magnetic-field limit.
Marmorkoset al studied the effects of the electron–electron correlations for the remote D−

states withL = 0 and 1 in double quantum wells [22]. They showed that the angular
correlation atϕ = π for the state with zero angular momentum reaches the maximum at a
certain value of the magnetic field, whereas it decreases at larger fields. Although there are
some differences between the more realistic quantum well model and the present model for
the barrier D− centre, our results for the singlet state withL = 0 are qualitatively consistent
with the results of Marmorkoset al. However, for the states withL > 2 we cannot see any
decrease of the angular correlations atϕ = π after they reach the maximum. States with
largeL can reach a larger maximum angular correlation compared with states with smaller
L. In figure 7 it is also shown that the value of the magnetic field at which the angular
correlation becomes maximum is larger for the state with largeL than for the state with
smallL. Based on the relation between the angular correlations and the strength of binding
for each barrier D− state we can understand that the change of the angular correlations as
shown in figure 7 gives rise to the magnetic-field-induced angular-momentum transitions.
That is, the strength of binding for the barrier D− ground state for a givenL increases
by making the correlations between the electrons strong until the angular correlation of the
state becomes a maximum asγ increases. The strength of binding decreases asγ increases
further and the state reaches the unbound but localized state [20, 22] because the angular
correlation is almost unchanged and the energy of the state increases as a result of the
confinement due to magnetic fields. The transition of the ground state forL → L + 1
occurs at a certain value ofγ as the state with largerL can reduce its energy by making
the correlations stronger.

4. Summary

We investigated the relation between the electron–electron correlations and the magnetic-
field-induced angular-momentum transitions for the problem of the barrier D− centre based
on the variational method. The Chandrasekhar-type variational wavefunctions of the barrier
D− states are constructed based on the exact solutions in the strong-magnetic-field limit.
Using these variational functions we calculated the energies of the barrier D− states, the
binding energies, the electron densities, the angular correlations, and the average distances
between the two electrons. By comparing the energies of the barrier D− states based on
the present variational method with those based on the direct diagonalization method, it is
found that our variational calculations give a relatively good approximation for the barrier
D− states. The number of parameters included in the present variational method is much
smaller than that used in the direct diagonalization method, so that we can easily calculate
various physical quantities within the variational method. For finiteζ the transitions of
the barrier D− ground state occur as a function ofγ . In this case the strong correlations
appear in the electron densities, the angular correlations, and the average distances between
the two electrons. As a consequence of the detailed investigations on the relation between
the angular correlations and the strength of binding for each barrier D− state, we found
the following. Except for the singlet state withL = 0 the angular correlation for each
barrier D− state becomes strong until a certain value ofγ and then it remains almost
unchanged for largerγ . The state with largeL can reach a larger maximum angular
correlation compared with the state with smallL and the value of the magnetic field at
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which the angular correlation becomes maximum is larger for the state with largeL than
for the state with smallL. The strength of binding for each barrier D− state increases
until the angular correlation of the state becomes maximum asγ increases. For largerγ
the angular correlation remains almost unchanged and the strength of binding decreases.
All the barrier D− states eventually become unbound. It is understood that the change of
the angular correlation for each barrier D− state gives rise to the magnetic-field-induced
angular-momentum transitions.
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